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Upper and lower bounds on generalized scattering lengths 
A. XI. ARTHUR§ and C. W. COLE§ 
Department of Mathematics, University of York, Heslington, York, YO1 5DD 
MS.  received 14th May 1970 

Abstract. Upper and lower bounds on generalized scattering lengths for 
static potentials are presented. Their derivation is based on complementary 
variational principles for a certain class of linear operator equations. Generalized 
forms of the well-known bounds of Schwinger and of Spruch and Rosenberg 
are obtained from this approach together with related complementary bounds 
which are new. The results are illustrated with calculations for screened 
Coulomb potentials. 

1. Introduction 
Upper and lower bounds for the ordinary scattering length A. have recently 

been derived from the theory of complementary variational principles using both the 
differential and integral equation formulations (Arthurs 1968, Anderson et al. 1970). 
An extension of these results to allow for general values of the orbital angular 
momentum is of some interest and in this paper we derive upper and lower bounds 
for generalized scattering lengths AL. 

All the results follow from the general theory for a certain class of linear operator 
equations. They are illustrated with calculations in the cases L = 1 and L = 2 for 
both positive and negative screened Coulomb potentials. 

The L wave +(r) of a zero-energy, potential-scattering process with angular 
momentum L can be specified in two equivalent ways. We can either regard +(Y) as 
the solution of the differential equation 

d2 L ( L + l )  
Y 2  

subject to the conditions 
(235 - l ) ! !  Y L + l  

4(0> = 0 + ( Y ) N A L  yL as :-+a (2 )  - 
(2L+ l)!! 

or alternatively think of it as the solution of the integral equation 
++ 1 

+(r)  = - - Sm k ( r ,  Y ’ ) ~ ( T ’ ) + ( Y ’ )  dr’ 
(2L+ l)!! 0 

where 
(3) 

1 Y < L + 1  

k ( r , r l )  = -- Y, = min ( Y ,  r l )  Y, = max ( r ,  r l )  (4) 2L+1 r , L  
and 

2m 
k2 

p ( y )  = -- Y(Y) (5) 

V(Y) being a short-range potential and m the mass of the scattered particle. The 
generalized scattering length A, is given by the relation 
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2. General theory 

equations, which we include here for completeness. 
Our results follow from the general theory for a certain class of linear operator 

We consider a physical problem which is described by the equation 

(T*T+Q)$ =f O<r< CO (7) 

4 = 4B on the boundary of (0, CO). (8) 
with 

Here f is a known function of the coordinate Y, #B specifies the behaviour of the 
exact solution at zero and infinity, Q is a symmetric positive operator with an inverse 
Q-I, and T is a linear operator with adjoint T* defined by the relation 

where (iT is a certain operator. We assume that all operators and functions used are 
real. The  applications considered in $ $  3 and 4 correspond to 

d L  d L  
dr Y dr Y 

T * =  _ _  + - + T ( Y )  UT = 1 (i) T = - + - + T ( Y )  

where T(T)  is either zero or a short-range function of Y ,  and 

(ii) T = integral operator T* = adjoint integral operator UT = 0. 

(1 1) 
Complementary variational principles associated with certain boundary value 

problems have been developed recently (cf. Arthurs 1970). For problems described 
by equations (7)  and (8) these principles lead to upper and lower bounds 

The  expressions for the functionals J and G (which are stationary at $) are 

J(@l)  = 4 @l(T*T+g)@l dr- f@l dr-[(T@l)uT(~@l-#B)]Om (I4) 
0 1," 
C O  10' 

and 
m 

G(TQ2) = - k  @,T*T@,dr-h (f- T*T@,)Q-l(f- T*T@,,)dr 

(15) - [ (T@2)aT(*@2 -#B)l:. 

From these expressions for J and G it can be verified directly that the bounds in 
equation (12) hold good, provided that the trial function Q1 satisfies 

[T(@l-$)uT(@l-$B)l: < (16) 
3. Differential equation approach 

We now apply the theory of $ 2  to the zero-energy scattering problem described 
by the differential equation (1) subject to the boundary conditions (2). Equations (1) 
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and (2) are examples of (7)  and (8). It is convenient to treat the cases p>O and 
p < 0 separately. 

3.1. The casep>O 
We choose 

(17) 

(2L - l)!! T L f l  
$hB = 0 at  Y = 0 ~ B N A L  r L  - asr-+co. (19) 

(2L + l)!! 
Then the results of 5 2 apply to equations (1) and (2), provided condition (16) is 
satisfied. The optimum choice for this condition becomes 

We shall satisfy (20) by taking the trial function CD, such that 

(2L - l)!! 7 L f l  
al(o) = 0 @,-a, y L  as r - f c o  (21) - 

(2L + l)!! 
where a, is a constant. The  basic functionals in (13), (14) and (15) then become 

R 2 L  + 1 

R + m  
- A.) 

d2 L ( L + l )  
Y 2  

R 2 L C 1  

+ a, - 2AL] (23) 
+ ?2 ((2L - l)!! (2L + l)!! R +m 

and 

G(TQ2) = -3 Cm Q 2  (-- dr2 + 
0 

The boundary term involving R can be subtracted from each functional, and to get 
a useful bound from G it is necessary to make the trial function O2 satisfy boundary 
conditions of the form 

(2L - l)!! 
as Y+CO (25 ) - 

Y L  (2L + l)!! q o )  = 0 Q2 a2 
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otherwise the lower bound recedes to minus infinity. Then from G < I  < J we obtain 
upper and lower bounds for the generalized scattering length AL, namely 

A - ( @ 2 )  <A, < A +(@I) 
where 

and 

The  upper bound (27) is the non-zero L form of the one due to Spruch and Rosenberg 
(1959), while the lower bound (28) is a generalization of a result of Anderson et al. 
(1970). 

3.2. The casep < 0 

We retain the identification 
Whenp  is negative we cannot set Q = p as in 5 3.1, because Q is to be positive, 

d2 L(L + 1) 
dr2 Y 2  

-- + +p = T * T + Q  

but this time we take 
d2 L(Lt-1) 
dr2 r2 

+ +hop T*T= -- 

Q = (Xo - I)( -P> 
where X, is the lowest eigenvalue of the equation 

Evidently Q is positive provided Xo > 1. From (30) it follows that 

d L  d L  
dr r dr Y 

T = -  + - + 7 ( Y )  T * = - - + - +  76,) 

(29) 

(33) 

where T ( Y )  is a short-range function of r which depends on p(r). It is not necessary 
to find T(Y), since to evaluate the boundary terms in expressions (13) to (15) we 
merely need to know the nature of T when r is large. 

We now apply the theory of 0 2 with 

f = O  UT = 1 (34) 
taking trial functions 
The  resulting bounds for AL are found to be 

and a2 which satisfy the boundary conditions (21) and (25). 

' A, '( @2) < A, < A + '(@I) (35) 
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where 
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and 
d2 L(L + 1) + -- 

Y 2  
A.-’(Q2) = a2+(h0- 1 ) - l  

The upper bound (36) is the non-zero L form of that due to Spruch and Rosenberg 
(1959)) being identical to the expression in (27)) while the lower bound (37) is a 
generalization of a result of Anderson et al. (1970). 

4. Integral equation approach 

I t  is more convenient to rewrite (3) in the form 
We now turn to the integral equation approach specified by equations (3) and (6). 

where K is the symmetric positive integral operator defined by 

K+(Y) = S m p ( r ) k ( r ,  r ’ )  p ( r ’ )  +(Y’) dr’ 
0 

with 

(39) 

1 Y,L+l 
k(B, Y’) = -- Y, = min (Y, r ’ )  Y, = max ( r , ~ ’ ) .  (40) 2L+1 T,L 

Equation (38) can be identified with (7) in various ways, which we consider separately. 
In  each of these ways the operators T and T* are given by condition (11)) so that 

UT = U (41) 
and no boundary terms appear in expressions (13) to (15) for I, J and G. Thus T and 
T* only occur in the product T*T, and individual representations of them are not 
required. A l l  we need is the result that any symmetric positive operator can be 
decomposed into a product T*T (Mikhlin 1964). Note that, from equation (41), 
condition (16) is automatically satisfied. 

4.1. Positice p 
For positive potentials we choose 

(42) 

Using equations (6) and (12) to (15) we find that (42) leads to 

where 
B-(@l) <AL<B+(@2) 

2 

P Y L + l  +KO,) 1 dr 
( (2L +-l)!! 
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and 

The  lower bound (45) is the non-zero L form of the Schwinger bound (cf. Moiseiwitsch 
1966), while the upper bound (44) is a generalization of a-result derived by Arthurs 
(1968). 

4.2. Negatice p 
For negative potentials a suitable choice is 

p r L f l  

(46) 
f = (2L+ l)!! 

T*T = -(pAo-'+K) Q = ( I - A o - ' ) ( - P )  

where we now think of A, as the smallest eigenvalue of 

Ao(-p)-lKe = e. (47) 
Thus Q is positive provided again that ho > 1. Using equations (6) and (12) to (15) 
we find that (46) leads to 

where 
B-  '(@)2) < A, < B+ ' ( @ I )  (48) 

and 
m 

B-'(@*) = 1 @2(ph0-1 t K)Q2 dr+  - 
0 

The  upper bound (49) is the non-zero L form of the Schwinger bound, while the 
lower bound (50)  is a generalization of a result of Arthurs (1968). 

5. Illustrative results 
T o  illustrate the theory we have calculated bounds on generalized scattering 

lengths AL for L = 1 and L = 2 from the differential equation approach for both 
positive and negative screened Coulomb potentials given by 

V(Y) = {exp( - / ~ Y ) ) / Y  and V(Y) = - (exp( - / ~ Y ) } / Y  (51) 
j3 being some positive parameter. The  scattered particle was chosen to have mass 
m = 1 AU and the following trial function was used: 

,L + 1 
I 

@ = a ( 2 L -  l)!! ~ - ~ { 1 -  exp( - M . Y ) ) ~ ~ + ~ - -  
(2L + I)!! 

where a and W. are variational parameters. This function has the correct behaviour 
at zero and infinity. Calculations have been performed for L = 1 and L = 2 and a 
range of values of /3, and the results (in atomic units) are shown in tables 1 and 2. 
The L = 0 bounds of Anderson et al. (1970) are included for comparison purposes. 
For the bound A-' the eigenvalues A, corresponding to L = 1 and L = 2 were 
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required. These were calculated by an iteration method (cf. Robinson et al., 1970) 
and found to be 

Xo(L = 1) = 4.53968 Ao(L = 2) = 10.9418. (53) 
The condition A,> 1 which must be satisfied (see $5 3 and 4) in A-’ and B-’ there- 
fore places a lower limit on possible values of /3 in these cases. 
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